

Analytical Laboratory

13339 Hagers Ferry Road Huntersville, NC 28078-7929 McGuire Nuclear Complex - MG03A2 Phone: 980-875-5245 Fax: 980-875-4349

Order Summary Report

Order Number:	J12020398			
Customer Name(s):	Bill Kennedy, Melonie Mar	tin, Wayne Chapman, Tom Johnson		
Customer Address:	3195 Pine Hall Rd			
	Mailcode: Belews Steam S	Station		
	Belews Creek, NC 28012			
Lab Contact:	Jason C Perkins	Phone: 980-875-5348		
Report Authorized By: (Signature)		Date:	3/9/2012	

Program Comments:

Please contact the Program Manager (Jason C Perkins) with any questions regarding this report.

Data Flags & Calculations:

Any analytical tests or individual analytes within a test flagged with a Qualifier indicate a deviation from the method quality system or quality control requirement. The qualifier description is found at the end of the Certificate of Analysis (sample results) under the qualifiers heading. All results are reported on a dry weight basis unless otherwise noted.

Data Package:

This data package includes analytical results that are applicable only to the samples described in this narrative. An estimation of the uncertainty of measurement for the results in the report is available upon request. This report shall not be reproduced, except in full, without the written consent of the Analytical Laboratory. Please contact the Analytical laboratory with any questions. The order of individual sections within this report is as follows:

Job Summary Report, Sample Identification, Technical Validation of Data Package, Analytical Laboratory Certificate of Analysis, Analytical Laboratory QC Reports, Sub-contracted Laboratory Results, Customer Specific Data Sheets, Reports & Documentation, Customer Database Entries, Test Case Narratives, Chain of Custody (COC)

Certification:

The Analytical Laboratory holds the following State Certifications: North Carolina (DENR) Certificate #248, South Carolina (DHEC) Laboratory ID # 99005. Contact the Analytical Laboratory for definitive information about the certification status of specific methods.

Sample ID's & Descriptions:

Sample ID	Plant/Station	Collection Date and Time	Collected By	Sample Description
2012004412	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	FGD Purge Eff
2012004413	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	BIOREACTOR 1 INF.
2012004414	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	BIOREACTOR 1 INF. BLANK
2012004415	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	BIOREACTOR 2 EFF.
2012004416	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	BIOREACTOR 2 EFF. BLANK
2012004417	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	FILTER BLANK
2012004418	BELEWS	22-Feb-12 8:30 AM	ILLEGIBLE	Trip Blank
7 Total Samples				

Technical Validation Review

Checklist:

Mary Ann Ogle

Reviewed By:

	COC and .pdf report are in agreement with sample and analyses (compliance programs and procedure		✓ Yes	□ No
	All Results are less than the laboratory reporting lin	nits.	Yes	✓ No
	All laboratory QA/QC requirements are acceptable.		✓ Yes	No
	The Vendor Laboratories have been qualified by the Analytical Laboratory	е	No	
Report	t Sections Included:			
✓	Job Summary Report	✓ Sub-contr	acted Laborate	ory Results
✓	Sample Identification	Customer	Specific Data	Sheets, Reports, & Documentation
✓	Technical Validation of Data Package	Customer	Database Ent	ries
✓	Analytical Laboratory Certificate of Analysis	✓ Chain of 0	Custody	
	Analytical Laboratory QC Report	✓ Electronic	Data Delivera	able (EDD) Sent Separately

Date:

3/9/2012

This report shall not be reproduced, except in full.

Order # J12020398

Site: FGD Purge Eff Sample #: 2012004412

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte Result Units Qualifiers RDL DF Method Analysis Date/Time Analyst ALKALINITY Vendor Parameter Complete 1 V_PRISM NITRITE + NITRATE (COLORIMETRIC) Nitrite + Nitrate (Colorimetric) 14 mg-N/L 0.25 25 EPA 353.2 27-Feb-12 11:39 BGN9034 INORGANIC IONS BY IC										
Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst		
ALKALINITY										
Vendor Parameter	Complete				1	V_PRISM				
NITRITE + NITRATE (COLORIME	TRIC)									
Nitrite + Nitrate (Colorimetric)	14	mg-N/L		0.25	25	EPA 353.2	27-Feb-12 11:39	BGN9034		
INORGANIC IONS BY IC										
Bromide	110	mg/L		5	50	EPA 300.0	24-Feb-12 22:22	JAHERMA		
Chloride	6900	mg/L		100	1000	EPA 300.0	24-Feb-12 22:22	JAHERMA		
Sulfate	1300	mg/L		100	1000	EPA 300.0	24-Feb-12 22:22	JAHERMA		
MERCURY (COLD VAPOR) IN W	ATER									
Mercury (Hg)	175	ug/L		5	100	EPA 245.1	02-Mar-12 09:43	AGIBBS		
Mercury Dissolved (cold vapor)	in Water (Filtere	<u>d)</u>								
Mercury (Hg)	< 2.50	ug/L		2.5	50	EPA 245.1	02-Mar-12 10:42	AGIBBS		
DISSOLVED METALS BY ICP										
Manganese (Mn)	5.15	mg/L		0.05	10	EPA 200.7	29-Feb-12 10:23	MHH7131		
TOTAL RECOVERABLE METALS	S BY ICP									
Boron (B)	203	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Calcium (Ca)	4150	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Iron (Fe)	86.2	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Lithium (Li)	0.110	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Magnesium (Mg)	639	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Manganese (Mn)	6.16	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Potassium (K)	48.9	mg/L		1	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
Sodium (Na)	38.6	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:36	MHH7131		
DISSOLVED METALS BY ICP-MS	<u>s</u>									
Selenium (Se)	240	ug/L		10	10	EPA 200.8	07-Mar-12 12:35	MHH7131		
TOTAL RECOVERABLE METALS	S BY ICP-MS									
Arsenic (As)	109	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Cadmium (Cd)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Chromium (Cr)	174	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Copper (Cu)	70.8	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Nickel (Ni)	135	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Selenium (Se)	3840	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Silver (Ag)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		
Zinc (Zn)	136	ug/L		10	10	EPA 200.8	06-Mar-12 10:30	KRICHAR		

This report shall not be reproduced, except in full.

Order # J12020398

Site: FGD Purge Eff Sample #: 2012004412

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
SELENIUM SPECIATION Vendor Parameter	Complete				1	V_AS&C		
TOTAL DISSOLVED SOLIDS TDS	16000	mg/L		200	1	SM2540C	28-Feb-12 16:00	TJA7067
TOTAL SUSPENDED SOLIDS TSS	4500	mg/L		250	1	SM2540D	27-Feb-12 11:48	AGIBBS

Site: BIOREACTOR 1 INF. Sample #: 2012004413

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

	- "			201				• • •
Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
ALKALINITY								
Vendor Parameter	Complete				1	V_PRISM		
NITRITE + NITRATE (COLORIME	TRIC)							
Nitrite + Nitrate (Colorimetric)	12	mg-N/L		0.25	25	EPA 353.2	27-Feb-12 11:40	BGN9034
INORGANIC IONS BY IC								
Bromide	110	mg/L		5	50	EPA 300.0	24-Feb-12 22:37	JAHERMA
Chloride	7200	mg/L		100	1000	EPA 300.0	24-Feb-12 22:37	JAHERMA
Sulfate	1400	mg/L		100	1000	EPA 300.0	24-Feb-12 22:37	JAHERMA
MERCURY 1631								
Vendor Parameter	Complete				1	V_BRAND		
MERCURY (COLD VAPOR) IN W	ATER							
Mercury (Hg)	< 2.50	ug/L		2.5	50	EPA 245.1	02-Mar-12 09:46	AGIBBS
Mercury Dissolved (cold vapor)	in Water (Filtere	<u>d)</u>						
Mercury (Hg)	< 2.50	ug/L		2.5	50	EPA 245.1	02-Mar-12 10:45	AGIBBS
DISSOLVED METALS BY ICP								
Manganese (Mn)	4.46	mg/L		0.05	10	EPA 200.7	29-Feb-12 10:27	MHH7131

This report shall not be reproduced, except in full.

Order # J12020398

Site: BIOREACTOR 1 INF. Sample #: 2012004413

Site. BIOINLACTOR	I IINI .					Sample #.	2012004413	
Collection Date: 22-Feb	o-12 8:30 AM					Matrix:	OTHER	
Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
TOTAL RECOVERABLE ME	TALS BY ICP							
Boron (B)	229	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Calcium (Ca)	3670	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Iron (Fe)	< 0.100	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Lithium (Li)	< 0.050	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Magnesium (Mg)	717	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Manganese (Mn)	5.02	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Potassium (K)	23.1	mg/L		1	10	EPA 200.7	27-Feb-12 11:39	MHH7131
Sodium (Na)	42.0	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:39	MHH7131
DISSOLVED METALS BY IC	CP-MS							
Selenium (Se)	91.1	ug/L		10	10	EPA 200.8	07-Mar-12 12:39	MHH7131
TOTAL RECOVERABLE ME	ETALS BY ICP-MS							
Arsenic (As)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Cadmium (Cd)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Chromium (Cr)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Copper (Cu)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Nickel (Ni)	44.7	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Selenium (Se)	81.6	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Silver (Ag)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
Zinc (Zn)	< 10.0	ug/L		10	10	EPA 200.8	06-Mar-12 10:33	KRICHAR
SELENIUM SPECIATION								
Vendor Parameter	Complete				1	V_AS&C		
Site: BIOREACTOR	1 INF. BLANK					Sample #:	2012004414	
Collection Date: 22-Feb	-12 8:30 AM					Matrix:	OTHER	
Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
MERCURY 1631								
Vendor Parameter	Complete				1	V_BRAND		

Site: BIOREACTOR 2 EFF. Sample #: 2012004415

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte Result Units Qualifiers RDL DF Method **Analysis Date/Time** Analyst **ALKALINITY**

V_PRISM Vendor Parameter Complete 1

This report shall not be reproduced, except in full.

Order # J12020398

Site: BIOREACTOR 2 EFF.

Sample #:

2012004415

Collection Date: 22-Feb-12 8:30 AM

Matrix: OTHER

Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
NITRITE + NITRATE (COLORIMI	ETRIC)							
Nitrite + Nitrate (Colorimetric)	0.078	mg-N/L		0.01	1	EPA 353.2	27-Feb-12 11:41	BGN9034
INORGANIC IONS BY IC								
Bromide	120	mg/L		5	50	EPA 300.0	25-Feb-12 03:07	JAHERMA
Chloride	7900	mg/L		100	1000	EPA 300.0	25-Feb-12 03:07	JAHERMA
Sulfate	1500	mg/L		100	1000	EPA 300.0	25-Feb-12 03:07	JAHERMA
MERCURY 1631								
Vendor Parameter	Complete				1	V_BRAND		
MERCURY (COLD VAPOR) IN W	<u>VATER</u>							
Mercury (Hg)	< 1.00	ug/L		1	20	EPA 245.1	06-Mar-12 10:13	AGIBBS
DISSOLVED METALS BY ICP								
Manganese (Mn)	5.72	mg/L		0.05	10	EPA 200.7	29-Feb-12 10:31	MHH7131
TOTAL RECOVERABLE METAL	S BY ICP							
Boron (B)	253	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Calcium (Ca)	3760	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Iron (Fe)	< 0.100	mg/L		0.1	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Lithium (Li)	< 0.050	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Magnesium (Mg)	800	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Manganese (Mn)	6.50	mg/L		0.05	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Potassium (K)	29.5	mg/L		1	10	EPA 200.7	27-Feb-12 11:43	MHH7131
Sodium (Na)	45.4	mg/L		0.5	10	EPA 200.7	27-Feb-12 11:43	MHH7131
TOTAL RECOVERABLE METAL	S BY ICP-MS							
Arsenic (As)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Cadmium (Cd)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Chromium (Cr)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Copper (Cu)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Nickel (Ni)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Selenium (Se)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Silver (Ag)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
Zinc (Zn)	< 5.00	ug/L		5	5	EPA 200.8	06-Mar-12 10:36	KRICHAR
SELENIUM SPECIATION								
Vendor Parameter	Complete				1	V_AS&C		

This report shall not be reproduced, except in full.

Order # J12020398

Site: BIOREACTOR 2 EFF. BLANK Sample #: 2012004416

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte Result Units Qualifiers RDL DF Method Analysis Date/Time Analyst

MERCURY 1631

Vendor Parameter Complete 1 V_BRAND

Site: FILTER BLANK Sample #: 2012004417

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
Mercury Dissolved (cold vapor) in Mercury (Hg)	Water (Filtered) ug/L		0.05	1	EPA 245.1	02-Mar-12 10:47	AGIBBS
DISSOLVED METALS BY ICP Manganese (Mn)	< 0.005	mg/L		0.005	1	EPA 200.7	29-Feb-12 09:36	MHH7131
DISSOLVED METALS BY ICP-MS Selenium (Se)	< 1.00	ug/L		1	1	EPA 200.8	07-Mar-12 11:43	MHH7131

Site: Trip Blank Sample #: 2012004418

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte	Result	Units	Qualifiers	RDL	DF	Method	Analysis Date/Time	Analyst
TOTAL RECOVERABLE METALS B	BY ICP							
Boron (B)	< 0.050	mg/L		0.05	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Calcium (Ca)	0.027	mg/L		0.01	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Iron (Fe)	< 0.010	mg/L		0.01	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Lithium (Li)	< 0.005	mg/L		0.005	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Magnesium (Mg)	< 0.005	mg/L		0.005	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Manganese (Mn)	< 0.005	mg/L		0.005	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Potassium (K)	< 0.100	mg/L		0.1	1	EPA 200.7	27-Feb-12 11:08	MHH7131
Sodium (Na)	< 0.050	mg/L		0.05	1	EPA 200.7	27-Feb-12 11:08	MHH7131
TOTAL RECOVERABLE METALS B	SY ICP-MS							
Arsenic (As)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Cadmium (Cd)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Chromium (Cr)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Copper (Cu)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Nickel (Ni)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Selenium (Se)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Silver (Ag)	1.12	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR
Zinc (Zn)	< 1.00	ug/L		1	1	EPA 200.8	06-Mar-12 10:27	KRICHAR

Analytical Lab Page 9 of 34

Certificate of Laboratory Analysis

This report shall not be reproduced, except in full.

Order # J12020398

Site: Trip Blank Sample #: 2012004418

Collection Date: 22-Feb-12 8:30 AM Matrix: OTHER

Analyte Result Units Qualifiers RDL DF Method Analysis Date/Time Analyst

SELENIUM SPECIATION

Vendor Parameter Complete 1 V_AS&C

18804 Northcreek Parkway Bothell, WA, 98011 Tel: (425) 483-3300 Fax: (425) 483-9818 www.appliedspeciation.com

March 2, 2012

Jay Perkins Duke Energy Analytical Laboratory Mail Code MGO3A2 (Building 7405) 13339 Hagers Ferry Rd. Huntersville, NC 28078 (704) 875-5245

Project: HAPS/MACT Testing Belews Creek (LIMS # J12020398)

Dear Mr. Perkins,

Attached is the report associated with four (4) aqueous samples submitted for selenium speciation analysis on February 23, 2012. The samples were received in a sealed cooler at 1.3°C on February 24, 2012. Selenium speciation analysis was performed via ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Any issues associated with the analysis are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

Russell Gerads Vice President

Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report prepared for:

Jay Perkins Duke Energy Analytical Laboratory Mail Code MGO3A2 (Building 7405) 13339 Hagers Ferry Rd. Huntersville, NC 28078

Project: HAPS/MACT Testing Belews Creek (LIMS # J12020398)

March 2, 2012

1. Sample Reception

Four (4) aqueous samples in 125mL HDPE bottles (provided by Applied Speciation and Consulting) were submitted for selenium speciation analysis on February 23, 2012. The samples were received on February 24, 2012 in a sealed container at 1.3°C.

The samples were received in a laminar flow clean hood, void of trace metals contamination and ultra-violet radiation, and was designated a discrete sample identifier. An aliquot of each sample was filtered (0.45µm) and each filtrate was stored in a secure, monitored cryofreezer (maintained at a temperature of -80°C) until selenium speciation analysis could be performed via ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS).

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are monitored for contamination to account for any biases associated with the sample results.

<u>Selenium Speciation Analysis by IC-ICP-CRC-MS</u> Prior to analysis, an aliquot of each sample was filtered with a syringe filter (0.45µm) and injected directly into a sealed autosampler vial. No further sample preparation was performed as any chemical alteration of a sample may shift the equilibrium of the system, resulting in changes in speciation ratios.

3. Sample Analysis

All sample analysis is preceded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are

standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases associated with the analytical platform.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Selenium Speciation Analysis by IC-ICP-CRC-MS</u> Each sample for selenium speciation analysis was analyzed by ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS) on February 27, 2012. An aliquot of each sample is injected onto an anion exchange column and mobilized by a basic (pH > 7) gradient. The eluting selenium species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (CRC) containing hydrogen gas which preferentially reacts with interfering ions of the same target mass to charge ratios (m/z). A solid-state detector detects ions transmitted through the mass analyzer and the resulting current is processed by a data handling system.

Retention times for each eluting species are compared to known standards for species identification.

4. Analytical Issues

The overall analyses went well and no significant analytical issues were encountered. All quality control parameters associated with this sample were within acceptance limits.

The estimated method detection limits (eMDLs) for selenite, selenate, and selenocyanate are generated from replicate analyses of the lowest standard in the calibration curve. Not all selenium species are present in preparation blanks; therefore, eMDL calculations based on preparation blanks are artificially biased low.

The eMDL for methylseleninic acid and selenomethionine is calculated from the average eMDL of selenite, selenate, and selenocyanate. The calibration does not contain methylseleninic acid or selenomethionine due to impurities in these standards which would bias the results for other selenium species.

If you have any questions or concerns regarding this report, please feel free to contact me.

Sincerely,

Russell Gerads Vice President

Applied Speciation and Consulting, LLC

Selenium Speciation Results for Duke Energy Project Name: HAPS/MACT Testing Belews Creek Contact: Jay Perkins LIMS #J12020398

> Date: March 2, 2012 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Sample Results

						Unknown Se
Sample ID	Se(IV)	Se(VI)	SeCN	MeSe(IV)	SeMe	Species (n)
FGD Purge Eff	157	48.6	ND (<1.8)	ND (<2.2)	ND (<2.2)	0 (0)
BioReactor 1 Inf	1.24	531	ND (<0.44)	ND (<0.56)	ND (<0.56)	1.96 (2)
BioReactor 2 Eff	ND (<0.33)	ND (<0.91)	ND (<0.44)	ND (<0.56)	ND (<0.56)	0 (0)
Metals Trip Blk	ND (<0.013)	ND (<0.036)	ND (<0.018)	ND (<0.022)	ND (<0.022)	0 (0)

All results reflect the applied dilution and are reported in µg/L

ND = Not detected at the applied dilution

SeCN = Selenocyanate

MeSe(IV) = Methylseleninic acid

SeMe = Selenomethionine

Unknown Se Species = Total concentration of all unknown Se species observed by IC-ICP-MS

n = number of unknown Se species observed

Selenium Speciation Results for Duke Energy Project Name: HAPS/MACT Testing Belews Creek Contact: Jay Perkins LIMS #J12020398

Date: March 2, 2012 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Quality Control Summary - Preparation Blank Summary

Analyte (µg/L)	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	eMDL*	eMDL 10x	eMDL 250x	eMDL 1000x
Se(IV)	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.013	0.33	1.3
Se(VI)	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.036	0.91	3.6
SeCN	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.018	0.44	1.8
MeSe(IV)	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.022	0.56	2.2
SeMe	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.022	0.56	2.2

eMDL = Estimated Method Detection Limit

Quality Control Summary - Certified Reference Materials

Analyte (µg/L)	CRM	True Value	Result	Recovery
Se(IV)	LCS	9.57	9.37	97.9
Se(VI)	LCS	9.48	9.07	95.7
SeCN	LCS	8.92	8.53	95.6
MeSe(IV)	LCS	6.47	5.81	89.8
SeMe	LCS	9.32	8.48	91.0

^{*}Please see narrative regarding eMDL calculations

Selenium Speciation Results for Duke Energy Project Name: HAPS/MACT Testing Belews Creek Contact: Jay Perkins LIMS #J12020398

Date: March 2, 2012
Report Generated by: Russell Gerads
Applied Speciation and Consulting, LLC

Quality Control Summary - Matrix Duplicates

Analyte (µg/L)	Sample ID	Rep 1	Rep 2	Mean	RPD
Se(IV)	Batch QC	ND (<1.3)	ND (<1.3)	NC	NC
Se(VI)	Batch QC	654.5	662.9	658.7	1.3
SeCN	Batch QC	ND (<1.8)	ND (<1.8)	NC	NC
MeSe(IV)	Batch QC	ND (<2.2)	ND (<2.2)	NC	NC
SeMe	Batch QC	ND (<2.2)	ND (<2.2)	NC	NC

ND = Not detected at the applied dilution

NC = Value was not calculated due to one or more concentrations below the eMDL

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte (µg/L)	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recovery	RPD
Se(IV)	Batch QC	5560	5233	94.1	5560	5251	94.4	0.3
Se(VI)	Batch QC	5045	5371	106.5	5045	5358	106.2	0.2
SeCN	Batch QC	4575	3814	83.4	4575	3866	84.5	1.3

	Comments Metal	Tiplemell.octeed By	Y5-9/5.	7) Colloquished By		STRUCT!		1) Redirect when die Customs	Custor	ner to	Mark COLUM	100001110	аррп	opria	3/2/2/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	20/200HJ [5	本作のの方にだ	SEE COFFE		ナーですると		Se OSE ONLY			Cus opoper, units	stome	Cinte		nalyti	Cal 7 (1)Project Name	Lab f 34	En	Du	
	S-TRAMANS =		2					merto sign & date													ö	Se Speciation Bottle			BC00	20003	 	^н Kennedy, Ro Уле Chapman,	Belen	HADOM		ergy	KO	
TO SELECT SELECTION OF THE SELECTION OF THE RELIGIOUS NAME AND ADDRESS OF THE PARTY	ås Cd Cr Cr Li u) Deprime	41.0		O De Commo	Date/Time	e to sign & date below - fill out from left to right.			Metals Trin Rik	Filto		BloKeactor	Dio Nogo	RinRear	RinReactor	BioRea		FGD P		•		69400	9)Res. Type:	3500	Johnson	Wayne Chapman, Melonie Martin, Tom	Belows Creek	ACT Today	(704) 875-5245 Fax: (704) 875-41	13339 Hagers Ferry Rd Huntersville, N. C. 28078	Mail Code MG03A2 (Building 740R)	CHAIN OF
Ma, Ag, Zn IRMNIC))	12 /300 ***	•	3 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3				Trin Alk	Filter Blv		BIOKeactor 2 Eff Hg Blk	CICKGGCOL V EN	RinReactor of E#	1 Inf Un Dill.	BioReactor 1 Inf		FGD Purge Eff	13 Sample Description or ID			MACTCAR	10)Project ID:	Mail Code;		4)Fax No:	A)TIDIRE NO:	910101111111111111111111111111111111111	5-5245 RYK-4740	's Ferry Rd N. C. 28078	ytical Laboratory 2 (Building 7406)	CUSTODY R
P = B, Ca, FE, K, Li		(2)Seal/Lock Opened by	SestifLock Opened By	completel	STORY OF THE PROPERTY OF THE P		An Pedalog										+	2,2,2	-+	0.22 \$:30	Date		PO#141391	Brooks Rand		PRISM PO#144725		PO#133241	AS&C					CHAIN OF CUSTODY RECORD AND ANALY
Mg. Mn. Na					•						_								my per	aria erin			thaded areas.	Ille eteldur.			2-H,S0	Pesside,		ナノンバイ			Analytical	ANALYSIS
1" Ma aniv	H	7 27	2 24			2/3		$\frac{1}{2}$	-	-	-	-						_	+	—	Comp. Grab		10 R	Ana upe	iys ired	3 78000	3-110	OGC TOTAL (C)	22	クイン	3	工 元 元		
3	wì	2	12 1		1/2	1/12		_	+	-	-	<u> </u>			_		_	-		_	DS, 7 g - 24			_		4	<u>. </u>	_C 		U	J		OFY U	REQUEST
		1360	1360		8	1	$\ \ $	\dashv	T	-	_						-	-	-	_	etais				<u> </u>	ω ω		_	Christing Water		SAMP	Pullstein Brands	<u>Q</u>	ST
_	Cu	stom	er. IMF	ORT	ANTI										*				_	H	g,IMS lered by	=Se station	, IC	P=	Mn	ω	_	_[S S S S S S S S S S S S S S S S S S S	' i	SAMPLE PROGRAM	4	₹ :	FORM
Pk	ease in	ndicat	e desi	red tu	rnar	ound.	$\ \cdot\ $	_	+	-	-			+	<u>-</u>		_	<u> </u>			e, Spe					C 🛓			1000			88		Ž
		-Other			'		1		1	_			-+	_ -	_	_		┢	├	ŢĈ	g 163 arbon	ate a	ka	init	7.	N.	one	-[MPDES	2			
	W	- 1	· 48 Hr	*7 Days	14 Days	22Requested Turnaround		_	<u> </u>					-	`		<u> </u>		_	bic alk	arbon aiinity Prism	ate a , tota	ikal	linît	į.	-			RCRA	DES THE	6			
	7	f. Cost	₹	, S	ays 	Jestec			ļ						٠		<u> </u>		_	Ch	loride, omide	Sulf	ate,	 :		-		 	-		.1.			
	1	Add. Cost Will Apply				Tum	-	+	+-	\vdash	\dashv				7		_		1		ttrate-r				NO2	2.4				OPT	S S S S S S S S S S S S S S S S S S S	Fag YSTRI	5	
	h	짯			ĺ	aroun		\perp				_		_	+	_		i		-					—	+		$\left\{ \right.$		O CLIF	ORIGINAL to LAB,	"Page 1 of 2 DISTRIBUTION		
		•				٥		+-	-			\dashv	$\overline{+}$	1	-	7				L						_	_			Ž	í₿	¥∾		
							_	_Ļ_		Щ]			l						1		1						

March 2, 2012

Duke Energy
ATTN: Jay Perkins
Scientific Support-Laboratory
13339 Hagers Ferry Road
Huntersville NC 28078
jcperkins@duke-energy.com
labcustomer@duke-energy.com

RE: Project DUK-HV1201 Client Project: J12020398

Dear Mr. Perkins,

On February 24, 2012, Brooks Rand Labs (BRL) received two (2) wastewater samples and two (2) corresponding field blanks. Samples were logged-in for total mercury (Hg) analysis. All samples were received, prepared, analyzed, and stored according to BRL SOPs and EPA methodology.

The results were blank-corrected as described in the calculations section of the applicable SOP(s) and may be evaluated using adjusted reporting limits to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific detection limits and other details.

The analysis of the third instrument blank produced an abnormal peak shape and was reanalyzed. The re-analysis yielded a typical peak and was reported as –IBL5.

Sample BioReactor 1 Inf was noted to be clear when fully oxidized while the associated blank BioReactor 1 Inf Blk was much darker and typical of a field sample. The BRL sample label and the Duke Energy label confirmed one another. No additional qualification of the data was warranted, aside from concentration qualifiers, and all associated quality control sample results met the acceptance criteria.

BRL, an accredited laboratory, certifies the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more details, see the *Report Information* page of the report. Please feel free to contact me if you have any questions regarding this report.

Sincerely,

Tiffany Stilwater Project Manager

tiffany@brooksrand.com

tilwat

Project ID: DUK-HV1201 **PM:** Tiffany Stilwater

Analytical Lab Page 19 of 34 Client PM: Jay Perkins Client PO: 141391

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/default.asp?contentID=586. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK	method blank	MS	matrix spike
BRL	Brooks Rand Labs	MSD	matrix spike duplicate
BS	laboratory fortified blank	ND	non-detect
CAL	calibration standard	NR	non-reportable
CCV	continuing calibration verification	PS	post preparation spike
COC	chain of custody record	REC	percent recovery
CRM	certified reference material	RPD	relative percent difference
D	dissolved fraction	RSD	relative standard deviation
DUP	duplicate	SCV	secondary calibration verification
ICV	initial calibration verification	SOP	standard operating procedure
MDL	method detection limit	SRM	standard reference material
MRL	method reporting limit	Т	total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- B Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- **J** Estimated value. A full explanation is presented in the narrative.
- J-M Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- N Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand, Ltd., those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses; USEPA; July 2002. These supersede all previous qualifiers ever employed by BRL.</u>

Project ID: DUK-HV1201 **PM:** Tiffany Stilwater

Analytical Lab Page 20 of 34 Client PM: Jay Perkins Client PO: 141391

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
BioReactor 1 Inf	1208031-01	Influent	Sample	02/22/2012	02/24/2012
BioReactor 1 Inf Hg Blk	1208031-02	DIW	Field Blank	02/22/2012	02/24/2012
BioReactor 2 Eff	1208031-03	Effluent	Sample	02/22/2012	02/24/2012
BioReactor 2 Eff Hg Blk	1208031-04	DIW	Field Blank	02/22/2012	02/24/2012

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Hg	Water	EPA 1631	02/25/2012	02/28/2012	B120298	1200134

Sample Results

Sample	Analyte	Report Matrix	Fraction	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
BioReactor 1 Int 1208031-01	f Hg	Influent	Т	0.15	U	0.15	0.40	ng/L	B120298	1200134
BioReactor 1 Int 1208031-02	f Hg Blk Hg	DIW	Т	156		15.2	40.4	ng/L	B120298	1200134
BioReactor 2 Ef 1208031-03	f Hg	Effluent	Т	20.4		0.30	0.80	ng/L	B120298	1200134
BioReactor 2 Ef 1208031-04	f Hg Blk Hg	DIW	Т	0.15	U	0.15	0.40	ng/L	B120298	1200134

Analytical Lab Page 21 of 34 Client PM: Jay Perkins Client PO: 141391

Accuracy & Precision Summary

Batch: B120298 Lab Matrix: Water Method: EPA 1631

Sample B120298-SRM1	Analyte Certified Reference Materia	Native al (1209009	Spike), NIST 1641d	Result I 1000x dilut	Units ion)	REC 8	Limits	RPD & Limits
	Hg	•	15.68	14.63	ng/L	93%	85-115	
B120298-MS1	Matrix Spike (1208031-03) Hg	20.39	100.1	139.3	ng/L	119%	71-125	
B120298-MSD1	Matrix Spike Duplicate (120	08031-03) 20.39	100.1	134.3	ng/L	114%	71-125	4% 24

Method Blanks & Reporting Limits

Batch: B120298 Matrix: Water Method: EPA 1631

Analyte: Hg

Sample	Result	Units
B120298-BLK1	0.06	ng/L
B120298-BLK2	0.07	ng/L
B120298-BLK3	0.10	ng/L
B120298-BLK4	0.07	ng/L

 Average: 0.08
 Standard Deviation: 0.02
 MDL: 0.15

 Limit: 0.50
 Limit: 0.10
 MRL: 0.40

Project ID: DUK-HV1201 PM: Tiffany Stilwater

Analytical Lab Page 22 of 34 Client PM: Jay Perkins

Client PO: 141391

Instrument Calibration

Sequence: 1200134 **Total Mercury and Mercury Speciation by CVAFS**

Method: EPA 1631

Instrument: THG-10 Date: 02/28/2012 Analyte: Hg

Lab ID 1200134-IBL1	True Value	Result 2.59	Units pg of Hg	REC	& Limits
1200134-IBL2		4.05	pg of Hg		
1200134-IBL4		5.66	pg of Hg		
1200134-CAL1	25.00	27.93	pg of Hg	112%	
1200134-CAL2	100.0	98.61	pg of Hg	99%	
1200134-CAL3	500.0	438.7	pg of Hg	88%	
1200134-CAL4	2500	2481	pg of Hg	99%	
1200134-CAL5	10000	10600	pg of Hg	106%	
1200134-ICV1	1568	1463	pg of Hg	93%	85-115
1200134-CCB1		9.00	pg of Hg		
1200134-CCV1	500.0	535.9	pg of Hg	107%	77-123
1200134-IBL5		4.25	pg of Hg		
1200134-CCV2	500.0	429.1	pg of Hg	86%	77-123
1200134-CCV3	500.0	469.1	pg of Hg	94%	77-123
1200134-CCV4	500.0	553.4	pg of Hg	111%	77-123
1200134-CCV5	500.0	443.6	pg of Hg	89%	77-123
1200134-CCV6	500.0	467.3	pg of Hg	93%	77-123
1200134-CCV7	500.0	449.0	pg of Hg	90%	77-123

Project ID: DUK-HV1201 **PM:** Tiffany Stilwater

Analytical Lab Page 23 of 34

Client PM: Jay Perkins Client PO: 141391

Sample Containers

Lab ID: 1208031-01 Report Matrix: Influent Collected: 02/22/2012 Sample: BioReactor 1 Inf Sample Type: Sample Received: 02/24/2012 Des Container Size Lot **Preservation** P-Lot Ship. Cont. Bottle FLPE Hg-T 250mL 71470160 none n/a Cooler 10 Lab ID: 1208031-02 Collected: 02/22/2012 Report Matrix: DIW Sample: BioReactor 1 Inf Hg Blk Sample Type: Field Blank Received: 02/24/2012 Des Container **Size** Lot **Preservation** P-Lot pН Ship. Cont. Bottle FLPE Hg-T 250mL 71470160 none n/a Cooler 10 Lab ID: 1208031-03 Report Matrix: Effluent Collected: 02/22/2012 Sample: BioReactor 2 Eff Received: 02/24/2012 Sample Type: Sample P-Lot Des Container Size **Preservation** Ship. Cont. Lot pН Bottle FLPE Hg-T 250mL none n/a Cooler 71470160 10 Lab ID: 1208031-04 Report Matrix: DIW Collected: 02/22/2012 Sample: BioReactor 2 Eff Hg Blk Sample Type: Field Blank Received: 02/24/2012 Container Size Lot **Preservation** P-Lot Hq Ship. Cont. Bottle FLPE Hg-T 250mL 71470160 none n/a Cooler 10

Shipping Containers

Cooler

Received: February 24, 2012 8:45 **Tracking No:** 4726 7966 8698 via FedEx

Coolant Type: Ice Temperature: 2.7 °C Description: Cooler
Damaged in transit? No
Returned to client? No

Custody seals present? No Custody seals intact? No COC present? Yes

100	g OO	<u> </u>	9 ::	্র :	ننزا ك	و اور	31			12	12		1	્રો	\tilde{S}	13	Ŋ		D			-					Con	APPER		al Lat				
	omments.	Seal Locked By	Seaff Socked By	Relinquished By	Self Supress By) Kelinquished By	1) Relimnushad by			TOOT!)20044			7575	THOOSE	7)2004/	HOOCK		2012DO4	"Lab ID	LAB USE ONLY			8)Oper. Unit:	o)Dusiness Offic	Sillinginger Linit:	4) Chair.	Page	EProject Name	of 34	O IT			
3		K		7	7			Custo	mer to	cor	piek	appro	opriat	3	U)	Tion the	(TO)	t	T L								> 17		ı		3	Ž	ļ	
Hals=TRM/IM		کسک		Sund		Hell	ustomer to sign & date below -			8						_				5	Se Speciation Bottle		0000	BCOO	20003	الر	sili Kennedy, Ro /ayne Chapman	Bele	HAPS/N		erav	uko O		
*Metals=TRM/IMS = As, Cd, Cr, Cu, NI, Se, Ag, Zn TRM/ICP = B, Ca, FE, K, Li, Mg, Mn, Na,	- Spring land			0/U	2/22	Date(Time	te below - fill out from left to right.			Meta	T		DIONEACI		RioRe	BioReact	BioRe		FGD	¹³ Sample D	Ħ H		69400	9)Res. Type:	6)Process: 3500	Johnson	שוו Kennedy, Ron Laws, Allen Stowe, Wavne Chapman. Melonie Martin Tom	Belews Creek	HAPS/MACT Testing	(704) 8 Fax: (704	13339 Hagers Fer Huntersville, N.C.	Duke Energy Analytical Laboratory Mail Code MGO3A2 (Building 7405)	CHAIN OF	
vi, Se, Ag, Zn TRM		3/12 /30		3/12 /300	112 0900	2-12 5:30	ight			Metals Trip Blk	Filter Blk		DIORESCIOI 2 ETI HG BIK	DISTRIBUTE DI	actor 2 Eff	BioReactor 1 Inf Ho Blk	BioReactor 1 Inf		FGD Purge Eff	¹³ Sample Description or ID			MACTCAR	10)Project ID:	Mail Code:		4)Fax No:		2)Phone No:		13339 Hagers Ferry Rd untersville, N.C. 28078	e Energy Analytical Laboratory Mail Code MG03A2 (Building 7405)	CUSTODY RECORD AND ANALY	
/ICP = B, Ca	12)Seal/Lock Opened By	10) Seal/Lock Opened By	\	8)Accepted By	X	2) Accepted By											スペス	دې	Q-22	Date	T	PO#1	Brook		- PO#144	Ida	į PO#	AS&C	!! []]	Ý		Live(s, *	ECORD	
. FE, K, Li,	yned By	ened by			S.	6		-								-		_	\$130 //	Time			Brooks Rand		PO#144725	CM.	PO#133241	C			20308		AND A	
Mg, Mn, Na				N.	4							-		-		+		-		Signature		naded areas.	omplete all			₩			•			Analytic	NALYS	
Aldo um	Daite/Tippe	Deterline		2/24	13°	12 m									-	+	-			¹⁷ Com		10	⁶ An	alys	es	Fice 5=None		Cooler Temp	. · .]- :	20043	קחרוי	Analytical Laboratory Use Only	SIS REQUEST	
ੜ 2	ime	100	370	7		103													-		TSS			$\overline{}$	괵	*	7	Ω		w		OJY I	Ξ	
¥					Ŋ	Ö	L	-		4	_	_ _	_	-	+-	+	•				245.1					ω			Ş	8	T 9	Se	S	
				300	É					-	-	+	+	1	+	╀	+	\dashv		Meta	is* //S=S	ا م	CD	N A r	-	ယ ယ	\dashv		Drinking Water	SAMPLE PROGRAM	Originating From) July	7	
	Cus	tome	r. IMI	Y PORTA	NTI ITM		L							*	_	1			(filtered	by stati	on)						Waste	養	ROGR			FORM	
Plea	se ind	dicate	des	ired tu	rnaro	und.	-			-	\dashv		-		+	-		- -			pecia							6			SS		S	
]				····			-			\dashv	+	- -		-		+	-	\dashv			631, \ onate					Non	e			Naga Gipu				
	W	*Other Add	•48 Hr	*7 Days	14 Days	²² Requ					-			>		-		-	١	oicarb Ilkalir /_Pri	onate nity, to sm	alka tal (alini (4.5)	ty,	ı - [•]	.		RCRA	TSU	Ground Water			(280)	7
	1	Add. Cost Will Apply		'র 	₹ 	estec	L		\perp	_							`	-	_ E	Bromi	de, Su de - D	ione	ЭX			<u> </u>				88		1 5	Ö	5
-	Ī	ME A				Tun	-			_	\dashv	_	+		-	-	_	-	_	Nittra	te-nitrite	e, C	NO	3/NC)2	2				PY to	STRI	Page	>	2
	h	Ąddy				²² Requested Turnaround	-										+													COPY to CLIENT	DISTRIBUTION	2		-
L															1				Γ						T		\exists							

ORIGIN ID: SRWA (980) 8/6-5213 G.C. SHARMA DUKE ENERGY 13339 HAGERS FERRY RD BLDG # 7405 HUNTERSVILLE, NC 28078 UNITED STATES US

SHIP DATE: 23FEB12 ACTWGT: 46.3 LB CAD: 798987/CAFE2509 DIMS: 26x15x14 IN

BILL SENDER

TO ATTN: MICHELLE BRISCOE BROOKS RAND 3958 6TH AVENUE NW

SEATTLE WA 98107

2 of 2 MPS# 4726 7966 8698 4726 7966 8687

0201

98107 WA-US SEA

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735 VA Certification No. 1287 Case Narrative

02/29/2012

Duke Energy Corporation (04) Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews Creek

Project No.: J12020398

Lab Submittal Date: 02/23/2012 Prism Work Order: 2020544

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Reviewed By

Pegg 7 Kendall

Data Qualifiers Key Reference:

HT Sample received and analyzed outside of the hold time.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

02/29/2012

Prism Work Order: 2020544

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
2012004412/FGDPurgeEff	2020544-01	Water	02/22/12	02/23/12
2012004413/BioReact1Inf	2020544-02	Water	02/22/12	02/23/12
2012004415/BioReact2Eff	2020544-03	Water	02/22/12	02/23/12

Samples received in good condition at 2.1 degrees C unless otherwise noted.

Duke Energy Corporation (04) Attn: Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews

Creek

Project No.: J12020398 Sample Matrix: Water Client Sample ID: 2012004412/FGDPurgeEff

Prism Sample ID: 2020544-01 Prism Work Order: 2020544 Time Collected: 02/22/12 08:30 Time Submitted: 02/23/12 15:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
рН	7.0 HT	pH Units			1	*SM4500-H B	2/24/12 13:00	JAB	P2B0483
Total Alkalinity	60	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 14:29	JAB	P2B0510
Carbonate Alkalinity	BRL	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0544
Bicarbonate Alkalinity	60	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0543

Duke Energy Corporation (04) Attn: Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews

Creek

Project No.: J12020398 Sample Matrix: Water Client Sample ID: 2012004413/BioReact1Inf

Prism Sample ID: 2020544-02 Prism Work Order: 2020544 Time Collected: 02/22/12 08:30 Time Submitted: 02/23/12 15:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
pH	7.0 HT	pH Units			1	*SM4500-H B	2/24/12 13:00	JAB	P2B0483
Total Alkalinity	45	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 14:29	JAB	P2B0510
Carbonate Alkalinity	BRL	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0544
Bicarbonate Alkalinity	45	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0543

PRISM | Full-Service Analytical & Environmental Solutions

Duke Energy Corporation (04) Attn: Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews

Creek

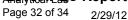
Project No.: J12020398 Sample Matrix: Water Client Sample ID: 2012004415/BioReact2Eff

Prism Sample ID: 2020544-03 Prism Work Order: 2020544 Time Collected: 02/22/12 08:30 Time Submitted: 02/23/12 15:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
pH	6.9 HT	pH Units			1	*SM4500-H B	2/24/12 13:00	JAB	P2B0483
Total Alkalinity	51	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0510
Carbonate Alkalinity	BRL	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00) JAB	P2B0544
Bicarbonate Alkalinity	51	mg/L	5.0	0.66	1	*SM2320 B	2/27/12 11:00	JAB	P2B0543

Duke Energy Corporation (04) Attn: Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews

Creek


Project No: J12020398

Prism Work Order: 2020544

Time Submitted: 2/23/2012 3:40:00PM

General Chemistry Parameters - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2B0483 - NO PREP										
LCS (P2B0483-BS1)				Prepared	& Analyze	d: 02/24/1	2			
рН	6.91		pH Units	6.860		101	99-101			
Batch P2B0510 - NO PREP										
Blank (P2B0510-BLK1)				Prepared	& Analyze	d: 02/27/1	2			
Total Alkalinity	BRL	5.0	mg/L							
LCS (P2B0510-BS1)				Prepared	& Analyze	d: 02/27/1	2			
Total Alkalinity	258	5.0	mg/L	250.0		103	90-110			
LCS Dup (P2B0510-BSD1)				Prepared	& Analyze	d: 02/27/1	2			
Total Alkalinity	254	5.0	mg/L	250.0		102	90-110	2	200	
Duplicate (P2B0510-DUP1)	Sour	ce: 202054	4-02	Prepared	& Analyze	d: 02/27/1	2			
Total Alkalinity	43.9	5.0	mg/L		44.9			2	20	
Batch P2B0543 - NO PREP										
Blank (P2B0543-BLK1)				Prepared & Analyzed: 02/27/12						
Bicarbonate Alkalinity	BRL	5.0	mg/L	-	-					
LCS (P2B0543-BS1)				Prepared	& Analyze	d: 02/27/1	2			
Bicarbonate Alkalinity	258	5.0	mg/L	250.0		103	90-110			
LCS Dup (P2B0543-BSD1)				Prepared	& Analyze	d: 02/27/1	2			
Bicarbonate Alkalinity	254	5.0	mg/L	250.0		102	90-110	2	200	

Duke Energy Corporation (04) Attn: Jay Perkins 13339 Hagers Ferry Road Huntersville, NC 28078 Project: HAPS/MACT Testing Belews

Creek

Project No: J12020398

Prism Work Order: 2020544

Time Submitted: 2/23/2012 3:40:00PM

General Chemistry Parameters - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2B0543 - NO PREP										
Duplicate (P2B0543-DUP1)	Sourc	e: 2020544	l-03	Prepared	& Analyze	ed: 02/27/1	2			
Bicarbonate Alkalinity	43.9	5.0	mg/L		51.2			15	20	
Batch P2B0544 - NO PREP										
Blank (P2B0544-BLK1)				Prepared	& Analyze	ed: 02/27/1	2			
Carbonate Alkalinity	BRL	5.0	mg/L							
LCS (P2B0544-BS1)				Prepared	& Analyze	d: 02/27/1	2			
Carbonate Alkalinity	258	5.0	mg/L				90-110			
LCS Dup (P2B0544-BSD1)				Prepared	& Analyze	d: 02/27/1	2			
Carbonate Alkalinity	254	5.0	mg/L				90-110	2	200	
Duplicate (P2B0544-DUP1)	Source	e: 2020544	l-03	Prepared	& Analyze	ed: 02/27/1	2			
Carbonate Alkalinity	BRL	5.0	mg/L		BRL				20	

Analytical Lab

Page 33 of 34 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST FORM **Duke Energy Analytical Laboratory Analytical Laboratory Use Only** Duke Energy_s ¹⁹Page 1 of 2 Samples Mail Code MGO3A2 (Building 7405) Matrix: OTHER NC. Originating DISTRIBUTION 13339 Hagers Ferry Rd sc... From Huntersville, N. C. 28078 ORIGINAL to LAB. (704) 875-5245 COPY to CLIENT SAMPLE PROGRAM Ground Water Fax: (704) 875-4349 Drinking Water UST 1)Project Name 2)Phone No: **HAPS/MACT Testing** RCRA AS&C **Belews Creek** Waste Cooler Temp (C) 2) Client: PO#133241 Bill Kennedy, Ron Laws, Allen Stowe, 4)Fax No: SPreserv.:1=HCL Wayne Chapman, Melonie Martin, Tom 2=H2SO4 3=HNO Johnson 3 PRISM 5)Business Unit: 6)Process: Mail Code: V_ASC 20003 3500 C_NO3/NO2 PO#144725 16 Analyse Required ICP=Mn Hg 1631, V_BRand ate alkalinity, ate alkalinity, total (4.5), pl 8)Oper. Unit: 9)Res. Type: 10)Project ID: BC00 omplete all 69400 Sulfate, Dionex **MACTCAR Brooks Rand** Speciation, haded areas. Hg, IMS=Se, I PO#141391 Carbonate a bicarbonate a alkalinity, tota TDS, TSS Hg - 245.1 LAB USE ONLY Chloride, 8 Bromide -Metals* Se Speciation Bottle ID ¹³Sample Description or ID Se Date Time Signature 8:30 FGD Purge Eff 2-22 01 コームス BioReactor 1 Inf 02 BioReactor 1 Inf Hg Blk BioReactor 2 Eff BioReactor 2 Eff Hg Blk Filter Blk Metals Trip Blk 1 1) Relinquished By Date/Time 8:30 ²²Requested Turnaround 14 Days 10) Seal/Lock Opened By Add. Cost Will Apply Date/Time 2-23-12 1840

* Metals=TRM/IMS = As, Cd, Cr, Cu, Ni, Se, Ag, Zn TRM/ICP = B, Ca, FE, K, Li, Mg, Mn, Na,

Page 8 of 8

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST FORM **Analytical Laboratory Use Only** Page Analytical Lab **Duke Energy Analytical Laboratory** Matrix: OTHER Duke Energy₃ Originating Mail Code MGO3A2 (Building 7405) SC ORIGINAL to LAB. 13339 Hagers Ferry Rd **COPY to CLIENT** Huntersville, N. C. 28078 SAMPLE PROGRAM Ground Water (704) 875-5245 NPDES UST Fax: (704) 875-4349 Drinking Water RCRA **HAPS/MACT Testing** AS&C Waste 1)Project Name Cooler Temp (C **Belews Creek** PO#133241 4)Fax No: Bill Kennedy, Ron Laws, Allen Stowe, 2=H2SO4 3=HNO 2) Client: Wayne Chapman, Melonie Martin, Tom 3 3 4=Ice 5=None 4 PRISM V_ASC C_NO3/NO2 Johnson Carbonate alkalinity, bicarbonate alkalinity, alkalinity, total (4.5), pH-V_Prism Mail Code: PO#144725 16Analyses Required 6)Process: Hg,IMS=Se, ICP=Mn 5)Business Unit: 3500 20003 V_BRand 10)Project ID: 9)Res. Type: omplete all Dionex 8)Oper. Unit: Speciation, Sulfate, **Brooks Rand BC00** MACTCAR haded areas. 69400 PO#141391 Hg - 245.1 TSS Hg 1631, Chloride, Bromide -Metals* TDS, LAB USE ONLY Se Speciation Bottle Se, Signature ¹³Sample Description or ID Date Time Q-22 8:30 1 1 1 FGD Purge Eff 2-22 1 1 1 1 1 1 BioReactor 1 Inf BioReactor 1 Inf Hg Blk 1 1 1 1 1 BioReactor 2 Eff BioReactor 2 Eff Hg Blk Filter Blk 1 Metals Trip Blk ²²Requested Turnaround 1) Relinquished By 8:30 2-22-12 8)Accepted By 10) Seal/Lock Opened By *Other Add. Cost Will Apply Date/Time 12)Seal/Lock Opened By * Metals=TRM/IMS = As, Cd, Cr, Cu, Ni, Se, Ag, Zn TRM/ICP = B, Ca, FE, K, Li, Mg, Mn, Na, 1** Mn only Comments